• 1

    Predicción de la epidemia del virus sincitial respiratorio en Bogotá, D.C., utilizando variables climatológicas

    Biomédica. Revista del Instituto Nacional de Salud 2016;36(3): 378-389

    medes_medicina en español

    GONZÁLEZ-PARRA G, QUERALES JF, ARANDA D

    Biomédica. Revista del Instituto Nacional de Salud 2016;36(3): 378-389

    Tipo artículo: Artículo

    Resumen del Autor: Introducción. El virus sincitial respiratorio es uno de los principales causantes de mortalidad de niños y adultos mayores en el mundo. Objetivo. Predecir las semanas de inicio de los brotes de infección por el virus sincitial respiratorio en Bogotá entre 2005 y 2010, utilizando variables climatológicas como variables de predicción. Materiales y métodos. Se establecieron las fechas de inicio de los brotes en niños menores de cinco años ocurridas entre 2005 y 2010, en Bogotá D.C., Colombia. Se seleccionaron las variables climatológicas utilizando una matriz de correlación y, posteriormente, se construyeron 1.020 modelos resultado de la combinación de las distintas variables climatológicas y las semanas de antelación al inicio del brote. Se seleccionaron los modelos utilizando los datos correspondientes a periodos de seis (2005-2010), cuatro (2005-2008) y dos años (2009-2010). Se determinaron los mejores modelos y las variables climatológicas más relevantes, utilizando clasificadores bayesanos ingenuos y curvas características de operación del receptor (Receiver Operating Characteristic, ROC). Resultados. Los mejores resultados se obtuvieron con los modelos que utilizaron el periodo de dos años (2009-2010) y la semana 0, con 52 y 60 % de aciertos, respectivamente. La humedad mínima fue la variable que más apareció en los mejores modelos (62 %). Los clasificadores bayesanos ingenuos permitieron establecer cuáles eran los mejores modelos para predecir la semana de inicio del brote. Conclusiones. Los resultados sugieren que los modelos en que se utilizaron la humedad mínima, la velocidad del viento y la temperatura mínima serían los modelos de predicción más eficaces.

    Notas:

     

    Palabras clave: Brotes de enfermedades, Climatología, Colombia, Epidemiología, Modelos de predicción, Salud pública, Teorema de Bayes, Virus sincitial respiratorio humano

    ID MEDES: 117925



    * RECUERDE. Al pulsar el enlace “Texto completo”, usted abandonará el entorno MEDES. En ese caso, la web a la que desea acceder no es propiedad de Fundación Lilly y, por tanto, ésta no se responsabiliza de los contenidos, informaciones o servicios presentes en ella, ni de la política de privacidad que aplique el sitio web de un tercero.